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Ammonothermal Growth
of III-Nitrides

Michael Callahan, Kelly Rakes, Buguo Wang
Air Force Research Laboratory, 

Sensors Directorate, Hanscom AFB
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Current Efforts

! Reduction of Wall Nucleation
! Reduction of oxygen and water in system

"Use of Getters
" High purity azides
"Use of alkali salts (NaBr, KBr)

! Synthesis of InN and AlGaN alloys

An integrated approach to III-nitride crystal growth MURI
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Wall Nucleation Reduction / Abetment 
using temperature gradients and fluid flow

Work Done
! Model Ideal Heating
! Model Ideal Furniture
! Experiment with Both

Wall Nucleation Toolbox
1. Temperature gradient
2. Heating configuration
3. Autoclave furniture/funnel design

Conclusions
•Some parasitic wall nucleation will occur even with optimal heating and 
furniture configurations
•Best way to control parasitic nucleation is modification of temperature 
profiles
• Modification of temperature profile adversely affects uniform 
crystallization on seeds by preventing formation of an isothermal zone 
•Benefits of heating and furniture have not realized practicable gains

4
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Wall Nucleation Abetment by use of Sleeves

! Catalytic Properties of Nickel Autoclaves:
" Nickel is a known catalyst for growth of Nitrides and facilitates 

wall nucleation
" Use of materials that will not react with solvent and also have low 

affinity for GaN deposition will help reduce wall nucleation
" Molybdenum plates showed reduction in GaN nucleation over 

nickel plates in test experiment

! Solution:
" Line crystallization region with Molybdenum liners, seeds racks
" Designed and machined furniture but have not been tested
" Experiment with other materials i.e. Tungsten

An integrated approach to III-nitride crystal growth MURI
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Gallium face

Nitrogen face

Erbium-doped Ammonothermal GaN crystals

SEM cross section of polished sample
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IMPURITY Analysis of Erbium-doped run

! Erbium incorporation ~ 100 ppma SIMS/GDMS
! Formation of Erbium Oxide at top of autoclave evidence 

successful of oxygen gettering

! Reduction ~ 5X of oxygen compared to runs not using erbium

5 x 10187 x 1017Er

1 x 10192 x 1018Fe

2 x 10182 x 1019C

5 x 10191 x 1019Si

2 x 10191 x 1019O

N faceGa faceElement (atoms/cc)

An integrated approach to III-nitride crystal growth MURI
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Summary of Erbium doped runs

! GaN: Er metal mole ratio in 
autoclave - 5:2 

! Nitrogen face growth rates            
> 50 ! !m/day

! Gallium face growth rates             
< 15 !m/day

! Total growth: 0.5-1mm                 
on 5 HVPE seeds in single run !

! X-ray powder diffraction 
determined single crystal
" Detected only (002) and (004) 

GaN peaks on both faces
! Rocking curves extremely broad     

> 3000 arcseconds
" Nutrient was depleted: etch 

back evident on nitrogen face 
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Ammonothermal synthesis of AlGaN and InN

Dissolution

Crystallization

525-550ºC

550-600ºC

400-450ºC

450-475ºC

2.0-3.0 
Molal

KN3/NH3
80%-fill

AlGaN InN

150ºC

450ºC

600ºC

3-Weeks1-Week

300ºC

AlGaN and InN Retrograde soluble
under conditions above
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PL of Polycrystalline Ammonothermal InN

• Highly Contaminated with 
oxygen
• Band Edge @ ~1.7eV
• Growth Temp < 500" C !
• Technique looks 
promising for low defect 
InN substrates
• Growth on AlN seeds in 
progress
• In/Ni alloy formation 
evident
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Pl of Ammono AlGaN grown on Polycrystalline GaN
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100 MeV shift from GaN bandgap, ~ 4% Al detected by EDS
Possibility of growing low defect AlGaN substrates ! 

Pl from Ammono
AlGaN growth
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AlGaN deposition

Pl from GaN seed
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Oxygen Contamination

! Oxygen and water impurities now biggest remaining 
issue
" Erbium and Rare Earths doping and gettering

# Need to find optimal point of GaN/Er ratio for maximum oxygen gettering
without distorting GaN lattice with Er incorporation

# Investigate other getters
# Gettering alone will not reduce oxygen to acceptable levels

" Growth with Salts (NaBr)
# GaN can be formed using Ga metal

$ Phase Issues need to be fully investigated 
$ Rule out formation of cubic GaN inclusions

# Can salts dissolve GaN nutrient ?
$ 1 experiment @ 525" C /2M NaBr result in no GaN dissolution

12
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Future Work

! Greater emphasis on initial growth to reduce defects 
at seed interface
" Impurities should low enough level to obtain low defect 

material
" Prevent nucleation, particulates on seeds during ramp up

# Etch-back of seeds before growth  
" TEM analysis would aid in determination of causes for 

columnar growth and other defects
! Growth on cm2 seeds in 2.2 cm and 3.4 cm autoclaves
! Further reduction of system impurities particularly 

water and oxygen
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Dr. C. Wood; program monitor 7



13

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

Publications

1) “Synthesis of dense polycrystalline GaN of high purity by the chemical 
vapor reaction process”, Buguo Wang, Michael Callahan, and John Bailey, 
J. Crystal Growth, 286 (2006) 50-54.

2) “GaN Single Crystals Grown on HVPE Seeds in Alkaline Supercritical 
Ammonia”, M. Callahan, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, 
B. Wang, and S-Q. Wang, Journal of Materials Science, 41 (2006) 1399-
1407

3) “Ammonothermal Synthesis of III-Nitride Crystals”, B. Wang and M. J. 
Callahan to Cryst. Growth & Design, in press

4) “Ammonothermal Synthesis of Aluminum Nitride Crystals ”, B. Adekore, 
K. Rakes, B. Wang, M. Callahan, S. Pendurti, and Z. Sitar, J.  Elect. 
Materials, in press

5) “Ammonothermal growth of GaN crystals in alkaline solutions” Buguo 
Wang, Michael J. Callahan, Kelly Rakes, David F. Bliss, Lionel O. 
Bouthillette, Sheng-Qi Wang, and Joseph W. Kolis, J. Crystal Growth, 287 
(2006)376-380

An integrated approach to III-nitride crystal growth MURI

Dr. C. Wood; program monitor 8



An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

S. Pendurti and V. PrasadS. Pendurti and V. Prasad

Modeling Ammonothermal Growth of GaNModeling Ammonothermal Growth of GaN

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

OutlineOutline

• Funnel Idea

• Two Side Heater System

• Bottom Heater and One Side Heater

• Bottom Heater and Three Side Heaters

• Conclusion

• Summary
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Original Funnel Idea

Idea: Insert funnels in the autoclave chamber to create Isothermal 
zones. Works for the autoclave chambers with only bottom heating.
Will it work for other heating configurations ?

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

Characteristics of a Two Side Heater SystemCharacteristics of a Two Side Heater System

Stagnant flow
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Characteristics of a Two Side Heater SystemCharacteristics of a Two Side Heater System

A funnel does not succeed in creating 
an isothermal lower growth region for
a two side heater configuration.  This
is because of a stagnant layer of fluid
and without any flow at the bottom of
the autoclave chamber.

Calculations show, that funnel does not
Make any difference for a two side
heater configuration.     

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

A Bottom Heater and One Side HeatersA Bottom Heater and One Side Heaters

Weak flow through Funnel and flow
breaking up into a recirculatory 
pattern here

An integrated approach to III-nitride crystal growth MURI
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3090C4990C5500C5660CExperimental

3020C5210C5510C5600CModeling

Top 
Thermocouple

Bottom 
Thermoco
uple

Upper 
Heater
Power 
(310 W)

Lower 
Heater
Power 
(254 
W)

There is an isothermal growth zone with 
constant temperature both for cases with
and without the funnel.  The isothermal
zone for the case without a funnel is
fortuitous and is because of a particular
set of heater power values

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

Bottom Heating with Three Side HeatersBottom Heating with Three Side Heaters

Velocity results for
Heating Powers of
Case 1 (next slide)
with just a baffle

And a funnel

An integrated approach to III-nitride crystal growth MURI
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Case 1: Bottom Heater Power is 279 W
Lowest Side Heater is 63 W
Middle Side Heater is  94 W
Top Side Heater is 261 W   

Case 2: Bottom Heater Power is 153 W
Lowest Side Heater is 165 W
Middle Side Heater is 60 W
Top Side Heater is 40 W   

5030C535oCModeling

5040C5460CExperiment

Upper HeaterBottom Heater

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

For the bottom heater and three heater case, the funnel succeeds in 
creating isothermal growth zones at the bottom of the autoclave 
chamber, for both heater power settings applied in the experiments. 
However, the funnel concept does not seem to work for the two side 
heater case, while its effect is weaker for the bottom heater and one 
side heater for a particular set of heater power settings.  This is 
related to the velocity fields.  The velocity field has to be such that 
there is a constant flow from the inlet of the funnel to the outlet.  If 
there is no flow (as in the two side heater configuration), or weak 
flow (one bottom heater, one side heater) with flow breaking up into 
recirculatory patterns the middle of the funnel, the funnel may not 
create an isothermal region.  Hence a strong bottom heating and a 
lower side heater are needed to create forceful flow through the
funnel.

ConclusionConclusion

An integrated approach to III-nitride crystal growth MURI
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SummarySummary

• All heating configuration used in Hanscom have been
explored, and a funnel tried out in them .

• Bottom heating, and lower side heater are necessary for the
funnel to work

• Calculations on, with porous bed as exactly used in Hanscom.

Acknowledgements

Kelly Rakes, Bumni Adekore, Michael Callahan. 
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Raman Spectroscopy of Ammonothermal

Growth Environment

James Perkins

Dr. Robert Nemanich

Dr. Zlatko Sitar

North Carolina State University
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Outline and Motivation

! Raman Spectra of Neat Ammonia

" Function of Temperature, Pressure, Density, and Time

" Dissociation  2NH3 -> N2 + 3H2

" Extent of Dimerization and H-Bonding

! NH3 as a Solvent

" Band Dependence on Association Strength with Ions

" Perturbed Spectra of Solutes

! Determination of Intermediate Species

An integrated approach to III-nitride crystal growth MURI
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Experimental Setup

! 13.5 ml autoclave

!  tested to 1.2 kbar with ammonia

4
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Normal Vibrations of NH3
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Raman Spectrum of Liquid Ammonia

!3C Symmetry

6
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Raman Spectrum of Critical Ammonia

UV excitation: 244 nm
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Visible Raman of Pure Ammonia

visible excitation: 514 nm

8
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Summary and Ongoing Work

! Pure Ammonia Baseline for

various fill percents found.

! No N2 or H2 signal observed.

! Longer duration (>1 day)

studies on the horizon.

! Ready to add mineralizer

and Gallium feedstock.
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Optical Characterization of III-Nitrides

B. J. Skromme and S. Sivasubramanian

Department of Electrical Engineering and 
Center for Solid State Electronics Research

Arizona State University, Tempe, AZ  85287-5706
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Overview of Progress

! Reflectance & PL on ammonothermal ZnMgO (recent 
work)

! Reflectance of bulk AlN:  Determination of the 
crystal-field splitting and valence band structure

! Optical characterization of bulk GaN grown by Na/Ga 
flux 

! Structural-defect related PL in GaN:  Folded 
prismatic faults in GaN/SiC

! Ion implantations to identify spectral fingerprints of 
various impurities in GaN (e.g., Cu, As, P, etc.) and 
study the origins of yellow PL in GaN

An integrated approach to III-nitride crystal growth MURI
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! ZnO 093 Growth conditions:  90.5% ZnO, 9.5% MgO nutrients; 
660" C; 0.9 Kbar; solvent is 4N KOH/0.5N LiOH; used ZnO seed.  

Reflectance and PL of Ammonothermal ZnMgO

• Reflectance/PL 
recorded from c-face
• ZnO formed during 
cooldown affects PL, 
not reflectance 
(probably patchy 
coating)
• Intrinsic exciton 
clearly observed in 
ZnMgO; PL peaks are 
probably bound 
excitons
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! Optical reflectance measurements of bulk AlN crystal #R407

Reflectance of Bulk AlN Crystal

C-axis

• R407 has a relatively flat m-plane 
face (see figure above) 
• The relative oscillator strengths of the 
two features reverse when the sample 
is rotated 90o (partial polarization 
effects due to spectrometer gratings)
•Solid lines are theoretical fits to the 
data using a model dielectric function 
with three Lorentzian oscillators for the 
A, B, and C excitons, and an exciton-
free dead layer at the surface
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Theoretical Calculations for AlN
! Exciton energies and oscillator strengths vary with crystal field splitting 

parameter (#cr); theoretical calculations have yielded a range of values
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Na/Ga Flux Material

! Best Cornell sample studied (large white stepped 
plate) has (Do,X) FWHM of 0.36 meV, extremely weak 
deep level PL
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! We previously identified basal plane stacking faults as origins 
of ~3.4 eV PL peak in bulk ammonothermal GaN, and observed 
new ~3.2 eV peak in heteroepitaxial MOCVD GaN on SiC 
misoriented from [0001] towards the [11-20] direction 
(provided by R.F. Davis and collaborators)

! Prior TEM work by Dudley’s group suggested the latter peak 
may be associated with folded I1 basal plane/prismatic fault 
configurations and the associated stair-rod dislocations

! We have extended this study to use AFM, conductive AFM, and 
CL spectral imaging to study the intersections of these faults 
with the surface

! The results prove the electrically active nature of the faults and 
support the association of the 3.2 eV peak with these fault 
configurations (possibly with the lattice disconnections)

Folded Prismatic Faults in GaN/SiC

8
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! 1 !m GaN / 0.1 !m AlN / 6H-SiC tilted 3.5o from [0001] to [11-20]
! GaN grown by MOCVD at 1020 oC, AlN grown at 1100 oC
! 4 K CL spectrum on area showing folded faults intersecting surface

Folded Prismatic Faults in GaN/SiC

• 3.205 eV peak (and 
higher energy shoulder 
at ~3.225 eV, observed 
at higher temperature) 
believed uniquely 
related to folded fault 
configurations
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Folded Prismatic Faults in GaN/SiC

•Secondary electron image reveals 
zigzagged lines where prismatic 
faults (PSFs) intersect surface
•Monochromatic CL image at 3.456 
eV [(Do,X) peak] is dark at 
positions of PSFs (competing 
processes)
•CL image at 3.20 eV is spotty, 
shows high intensity near the fault 
lines at specific locations believed 
to correspond to locations of stair-
rod dislocations and lattice 
disconnections
•CL image at 3.38 eV shows a few 
bright spots possibly related to 
BSFs

a) b) 

c) d) 

SEI CL at 3.456 eV

CL at 3.38 eVCL at 3.20 eV
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• Atomic force microscopy 
(AFM) image (left) shows clear 
evidence of shallow (~3 nm deep) 
trenches corresponding to surface 
fault terminations
•Conductive AFM image (right) 
shows enhanced or reduced 
conductivity along the edges of 
the trenches, and enhanced 
conductivity (white spots) at the 
ends of each fault, where 
dislocations should be present
•First direct evidence for 
electrically active nature of these 
faults and associated dislocations; 
should impact device performance 

a) b) 

c )  

AFM CAFM

AFM

•Magnified AFM image 
at left shows evidence of 
shallowly inclined BSFs 
intersecting the surface 
(faint ~vertical lines)

Folded Prismatic Faults in GaN/SiC
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Ion implanted HVPE GaN

! Implantations performed to identify spectral 
fingerprints and behavior of various impurities in 
GaN 

! Implanted species included Cu, to determine if it is 
electrically or optically active in GaN; As and P, to 
study the related isoelectronic centers; and various 
impurities including C, O, and N to study their effect 
on the yellow PL band in Ga

12
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Ion Implantation Study Using HVPE GaN

! Low temperature PL measurements of Mg, As, and P-
implanted and residual Zn-doped HVPE GaN samples

As and P implants 
yield highly 

resolved spectra 
of isoelectronic-
bound excitons 

with phonon 
replicas
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1.7 K PL Mg(Do,Ao)

As IBE

P IBE

HVPE GaN

1017 cm-3 P-implanted

1017 cm-3 As-implanted

Residual Zn

1017 cm-3 Mg-implanted
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Ion Implantation in GaN:  Yellow Band

! C-implanted HVPE GaN shows a strong enhancement of yellow 
(2.2 eV) luminescence band; not observed for N or O

•May be more than one 
origin of yellow PL band 
(VGa-related, and also due 
to certain impurities?)

•Also studied PL 
properties of HVPE GaN 
implanted with Be, Mg, 
Zn, Cd, Ca, P, and As, 
and some co-
implantations, to 
establish spectral 
“fingerprints” of various 
impurities1.50 2.00 2.50 3.00 3.50
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Yellow Band

Ion-Implanted HVPE GaN

1017 cm-3 O
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! All implants performed into high purity HVPE material from 
R. Molnar; samples capped after implantation with AlON and 
annealed for ~10 s at 1300 oC to remove damage, active dopants

• Low T PL spectra of HVPE 
samples implanted with Cu at three 
doses
•1.80 eV peak clearly enhanced by 
Cu implant; not by implants with 
any other species
•2.35 eV peak normally enhanced 
only for p-type implants; suggests 
possible acceptor activity
•No clear excitonic features, 
although broad low energy 
shoulder observed on (Do,X) peak

Ion implanted HVPE GaN
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1.8 K PL
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2.35 eV

(Do,X)HVPE GaN Implanted with Cu

1017 cm-3

1016 cm-3

1.80 eV
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Accomplishments
! First reflectance studies of ZnMgO, gave clear evidence of excitonic 

transitions in this system
! Determined crystal field splitting parameter of #cr = -230 meV in unstrained 

bulk AlN, and characterized valence band splittings accurately for the first 
time in this material; selection rules have important implications for light-
emitting devices in Al-rich AlGaN

! Characterized folded prismatic fault configurations in GaN using
monochromatic CL imaging, AFM, and CAFM

! Found clear evidence associating 3.2 eV PL peak with specific locations 
along faults; 3.4 eV peak more generally associated with basal-plane faults

! Found first evidence for optical activity of Cu in GaN, in a 1.8 eV PL peak in 
Cu-implanted material.  Identified clear isoelectronic behavior of As and P 
substituting for N, including site-switching behavior of P.  Found that both 
C and Be enhance intensity of yellow PL, but not N, O, or other implants
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Seeded Growth of AlN Single Crystals

Ziad G. Herro, Dejin Zhuang, Raoul Schlesser, Ramon Collazo, 
Rafael Dalmau and Zlatko Sitar

North Carolina State University

2
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Outline

! Thermodynamics of crystal growth
" Effect of the ambient gas on mass transport (N2 versus Ar)

! Progress in seed and crystal quality
" seed preparation
" growth process optimization
" crystal expansion

! Growth results and morphology
" Growth along the c-direction (Al and N-face)
" Effect of surface energy on growth morphology

! Conclusion
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Effect of the gas ambient on mass transport

! Thermodynamic consideration:
AlN(s) = Al(g) + ½ N2(g)
#G = -RT Ln Kp; Kp = PAl (PN2)1/2

Ln Kp = -74719/T + 26.66
PAl = 2 PN2 (in vacuum/Ar atmosphere)
Psys – PAr = PAl + PN2 (in mixed atmosphere)

Al Partial pressure Driving force

'
T

PT
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G
#
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exp
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Effect of the gas ambient on transport rate

! Experimental verification:
Mass transport at different ratios of Ar flow/total flow 

" The mass transport increases exponentially with increasing the Ar flow
" The use of Ar flow helps to reduce the graphite insulation degradation 

and the amount of C in the gas phase due to a reduced C-N2 reaction
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Seeded
Growth

Improvement of seed quality

Seed from grain expansion Crystal showing mirror-like and rough areas

Results at the last
MURI meeting

2 mm

6
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Crystals nucleated on 
the top of source

10 mm

(01-10)

Free standing crystal showing 
the m and c- facets

(000-1) 3 mm

KOH etching on the c- facet 
revealing the N-polarity

500!m

Growth of free-standing crystals

" Freely nucleated crystals reveal the natural crystal habit of AlN
" The m and c- facets are naturally observed, thus revealing their stability
" Aqueous KOH etching (60ºC for 5 min ) shows that all observed
c facets are N-polar

" These crystals are excellent candidates for seeds
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25 mm

" Photograph of a crystal, 15 mm in diameter and 12 mm in height, grown along 
the [002] direction from a 5 mm N-polar seed
" A single, mirror-like facet is observed in the middle that covers nearly the 

whole monocrystalline area
" Parasitic polycrystalline nucleation is confined around the central 

monocrystalline area

15 mm

Improvement of crystal quality

Results at the last
MURI meeting

8
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Crystal expansion angle

# Expansion angle ~45°
Seed

Expanded 
A-boule

poly poly

Seed

Expanded
C-boule

poly poly

# Expansion angle ~18-20°
# Good facet control
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Effect of seed temperature

" Besides the seed quality, seed temperature is an important parameter to 
control to avoid surface roughness 

" Al2O3 and  Al4C3 nucleate at low temperatures

Tseed < 2150°C Tseed > 2150°C

25 mm

10
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Wet etching

" Al-polar facet etched in 
KOH/NaOH eutectic at 430oC 
for 2 minutes

" Well defined hexagonal pits -
defect etching

" EPD is about 2.5×104 cm-2

" N-polar facet etched in 6M KOH 
solution at 60oC for 10 minutes

" Well defined hexagonal hillocks
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Growth on (002)-oriented seeds (Al-face)

500 µm

" Many growth centers are obvserved on as-grown crystal surfaces
reflecting a rather high supersaturation

" Step height of about 1 lattice parameter unit (0.5 nm)
" Terrace width varies between 50 nm and 70 nm

Optical microscopy AFM measurement

12
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Growth on (002)-oriented seeds (N-face)

AFM measurement

" One growth center controls the whole growth surface;
step flow growth mechanism.

" Step height of about 1 lattice parameter unit (0.5 nm).
" Terrace width L varies between 200 nm and 250 nm.

Optical microscopy

500 µm
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" According to the BCF theory:

a is the lattice parameter, 1 is the surface energy, 

2 is the vapor supersaturation; estimated to be around 2%

" As seen by the arriving Al species, N-polar (0001) surfaces have three
dangling bonds while Al-polar surfaces have only one.

" 1N = 3 1Al , therefore LN = 3 LAl , experimental results from AFM 
measurements agree with the theory.

" To have the same L in the case of Al-polarity as in N-polarity 2 should 
be reduced to 0.6 %, leading to very low growth rates.

1/0
eqP
P2

Model for surface morphology difference

)1(ln
4

2
13
4

0
kT

aL
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Conclusion 

! The use of Ar as ambient gas
" Implementation of an additional growth parameter
" Increase the transport rate while keeping the same 

temperature, pressure and temperature gradient

! AlN boule growth
" Very high quality (002)-seeds and (002)-crystals were 

obtained
" Very uniform crystals having one single facet covering the 

whole area were obtained
" Due to its high surface energy the N-polar face is very 

suitable for growth
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On the nature of the AlN surface oxide

Rafael Dalmau, Ramon Collazo, Seiji Mita,  Zlatko Sitar

Department of Materials Science and Engineering

North Carolina State University

2
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Outline

! Polishing

! Oxide stability

! Surface analysis

" Thermal evolution

" Stoichiometry

" Thickness

! Wet chemistry

! Summary

Motivation: Demands of conventional AlN homoepitaxy place

stringent requirements on bulk crystal surface preparation
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Polishing

! HRXRD: polishing
damage removal

! AFM: smooth
surfaces

! Role of water?

HRXRD (00.2) 
rocking curves:

i) double crystal

ii) triple crystal

AFM (2x2 µm2) scan

of polished AlN

surface oriented ~ 2º

off-axis from (00.2).
RMS roughness:

0.152 nm.

i) ii)

4
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Driving force

! What is the stable oxide on the AlN
surface under atmospheric
conditions?

! Consider stability of compounds:

! 

"Al
2
O
3

+ x H
2
O# [Al

2
O
3
,x H

2
O]

aluminum trihydroxide (Al(OH)3)x = 3

aluminum oxide hydroxide (AlOOH)x = 1

aluminum oxide (Al2O3)x = 0

compounddegree of hydration

AlN + 2H2O ! AlOOHamorph + NH3

AlOOHamorph + H2O ! Al(OH)3

AlN + 3H2O ! Al(OH)3 + NH3

! Reaction between H2O and AlN is
energetically favorable:
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Surface analysis (XPS)

! Surface sensitivity

! Molar concentration

! XPS survey scans

" adventitious carbon

" oxygen

! Deconvolution of O 1s
envelope

" OH- bonding state

" O2- bonding state

" ~1.5 eV peak separation

" AlOOH

OH-
O2-

Tsuchida & Takahashi, J. Mater. Res. 9(11), 2919 (1994)
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Thermal evolution

! UHV anneal (1x10-9 Torr base
pressure)

! Anneal steps

0. As loaded

1. 260 ºC

2. 770 ºC

3. 830 ºC

Surface behavior
determined by Al
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Hydroxide stoichiometry

! Calculations assumptions

" no O-N reactions

" stoichiometry Al:N = 1:1

! Ideal molar ratios

" aluminum trihydroxide

# Al0.25(OH)0.75

" aluminum oxide hydroxide

# Al0.33O0.33(OH)0.33

" aluminum oxide

# Al0.4O0.6

Plot of molar ratio of Al, O, and OH in surface

oxides calculated from XPS spectra of AlN thin

films:  as-loaded; and annealed at 260, 770, and

830 °C (steps 1-3).

Overall thermal evolution
AlOOH " Al2O3

Transformation sequence

8
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Hydroxide thickness

! Estimated from intensity ratio

of oxide and nitride

contributions to Al 2p peak
Hydrothermally treated AlN thin film.

XPS survey scans of AlN thin films before and

after boiling in DI water. Note intensity increase

of oxygen-related peaks and disappearance of N

peaks after boiling, due to greater surface oxide

layer thickness.

! 
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Hydroxide growth

• DI H2O boil (5 min)

• stoichiometric AlOOH

! Hydrothermal treatment

increases thickness

> 6hydrothermally treated AlN

1.2air exposed AlN (weeks)

0.8air exposed AlN (minutes)

estimated

thickness (nm)

sample

* M. R. Alexander et al., Surf. Interf. Anal. 29, 468 (2000)
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Surface treatment: wet chemistry

! Equilibrium conditions

! HCl dip (6M soln.)

" no effect on O concentration

! HF dip (10:1 dilution)

" small OH- reduction

! H3PO4 dip (pH 2 & 3)

" large O2- reduction

HF dip
O 1s

XPS survey scans of

samples before and after

H3PO4 dip. The O 1s peak

intensity decreases.

Plot of molar ratio of components of

the O 1s peak showing decrease in

the O2- component and stabilization

with respect to annealing.

H3PO4 dip 
O 1s

10
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Surface treatment: wet chemistry

! Can oxide components

be treated individually?

! Combined effect of

H3PO4 followed by HF

! Net oxygen removal

! Equilibrium

stoichiometry

corresponds to HF dip

Mechanism for reduction of
thick hydroxide layers
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Summary

! Reproducibly attained smooth high-quality polished
surfaces

! Identified the oxide on RT air-exposed AlN surfaces:
aluminum oxide hydroxide (AlOOH)

! Analyzed the thermal, hydrothermal evolution of the
surface oxide; surface behavior determined by Al

! Estimated the thickness of hydroxide layers

! Studied the effectiveness of wet chemical treatments
for hydroxide removal

! Identified a mechanism for reduction of thick
hydroxide layers

12
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Additional research

! X-ray reflectivity & TEM studies of polished samples

for near-surface evaluation

! Investigate in situ oxide removal processes compatible

with MOCVD

! Homoepitaxial growth of AlN on bulk crystals by

MOCVD
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Surface treatment: NH3 anneal

! Ammonia anneal

" T = 1040 ºC

" time = 10 min

" PNH3 = 10.5 Torr

! Oxygen reduction due

to OH- decrease
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Is HVPE Fundamentally Inferior to PVT of AlN

Ramon Collazo, Rafael Dalmau, Ziad Herro, Deijin Zhuang,
Zlatko Sitar

North Carolina State University

2

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

Motivation

! Low temperature, <1400°C

! Growth rate: 100-200 !m/hr

! Properties

" Opaque

" DCRC: 1200 arcsec

! High temperature, >2200°C

" material compatibility

" thermal stress

" growth control

! Growth rate: 100-500 !m/hr

! Properties

" Transparent

" DCRC: 20 arcsec

HVPE PVT
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Evolution of Surface Morphology

Substrate

J

x

h(x,t)

K > 0

K < 0

vs

! Development of surface morphology determined by

" local surface curvature, K

" velocity of species on the surface, vs

4
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Model of Surface Evolution

! 

"h x, t( )
"t

= F(x, t) # v$ (x, t)

! 

F(x, t) = J + "JK(x,t)
! 

v" (x, t) = #D
e
$

S

2
K(x,t)

! 

De =
DS" S#

2$

kBT
; effective  diffusivity

Ds =  surface  diffusivity

" s =  isotropic  surface  energy  density

# =  atomic  volume

$ =  number  of  atoms  perunit  area

Substrate

J

x

h(x,t)

K > 0

K < 0

vs

! Deposition, F(x,t)

" Constant incoming flux, J

" Finite atomic size, !

" Surface curvature, K(x,t)

! Surface diffusion

" Perpendicular surface velocity

due to surface diffusion,

! 

v"
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Perturbation Analysis

In the small slope limit:

! 

"h

"t
= J #$J

" 2h

"x 2
#D

e

" 4h

"x 4

! 

"h

"x
# 0 Initial sinusoidal perturbation:

sin(kx) and subtracting J

! 

h(x, t) = A(t)h(x,0)

Surface morphology given by:

! 

h(x, t) = e
"Jk 2#Dek

4( )t
sin kx( )

• Non-linear terms in overall equation

saturate instability into a relatively small

amplitude surface profile.

Unstable mode:

! 

"Jk2 #D
e
k
4

> 0

! 

" > "
0

where

! 

"
0

=
4# 2

D
e

$J

! 

" =
2#

k

" is the wavelength of the initial perturbation 

! 

"
m

= 2"
0

is the most unstable mode•Substrate

•Nucleation
•Supersaturation

•Initial surface preparation

•Growth Process (J)

•Surface/ Surface Diffusion

d
ep

en
d

s o
ndep

en
ds o

n “effective” diffusion length
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Process Conditions ("0)

“Effective” diffusion length

! 

"
0

=
4# 2

D
e

$J

•Limiting reactant specie flux (J)

! 

J "#p = pi input partial pressure of the

limiting reactant. (pi>>peq)

At a given temperature

! 

"
0

"
0

#
=

pi
#

pi

•Temperature (Surface diffusion)

! 

For E
A

>> k
B
T

and a given piDS is the surface diffusion,

with a given activation energy EA.

! 

D
S

= D
0
e
"
EA

kBT

! 

"
0

=
Ae

#E
A

k
B
T

T

! 

"#
0

#
0

=
E
A
$ k

B
T( )

2k
B

"T

T
2
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Process Conditions (")

• Nucleation (")

Critical nuclei radius

! 

"
C
#

1

$G
V

=
1

k
B
T ln 1+%( )

&
1

k
B
T ln%

with

! 

" >>1

At a given temperature

Nuclei density and surface preparation

! 

˙ n = n
"#A

" where n" = n
S

exp $%G
"

k
B
T

& 
' 
( 

) 
* 
+  

and %G
" ,

1

%G
V( )

2
-

1

k
B
T ln.( )

2
,  thus

n
"

n
S

,exp $
1

ln.( )
2

& 

' 
( ( 

) 

* 
+ + 

!GV : Process Free Energy Change/ Supersaturation

! 

˙ n :  Nucleation rate.

n
" :  Equilibrium nucleation density.

# :  atom - nuclei impigement rate.

A
" :  nuclei critical area.

n
S
 :  nucleation site density.

$G
" :  Energy barrier for nucleation.
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HVPE AlN: Columnar Structure

d

d : grain size

! 

d " # " 200 nm

Dark field TEM micrograph for the [0 0 0 2] direction

with zone axis [0 1 -1 0].
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Conclusions

! HVPE of AlN has fundamental limitations that are

manifested in the mosaicity of deposited films and

stability of the growth surface

" due to a low growth temperature, the growth surface can be

controlled only through the nucleation process and

columnar growth

" coalescence of columns into structures wider than the

critical surface diffusion distance results in surface

roughening and deterioration of crystalline quality

! seeded PVT growth of AlN does not suffer from above

limitations
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Physical Modeling of Physical Modeling of AlN/GaNAlN/GaN Vapor Vapor 
GrowthGrowth

Dang Cai, Xiaolin Wang, Hui Zhang
Department of Mechanical Engineering

State University of New York at Stony Brook

May 08, 2006
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Summary of AlN/GaN Growth Simulations

# Heat and mass transport in AlN sublimation growth;
# Source powder size/porosity, Stefan flow and diffusion controlled  flow;
# Isotropic/anisotropic models for vapor deposition process;
# Seed, axial and radial temperature and poly-crystal effects on growth, 

stresses and defects.

Publications: 1 book chapter, 7 journal papers and 14 conference papers

% AlN Sublimation Growth

% GaN IVPE Growth
# Optimization of geometrical parameters and operating conditions for fast 

and uniform GaN IVPE deposition; 
# Thermodynamic and kinetic analysis of gas phase/surface reactions in 

source bubbler and reactor chamber to identify critical reaction steps;
# Quasi-equilibrium and kinetic models developed to predict GaN growth 

rate.
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# Reaction zone size & movement 
are controlled by driving force, 
porosity and permeability.

# Driving force is due to the 
following temperature 
difference at different 
locations:

$ From source to seed
$ From leakage to cold 

surfaces
$ From side to top surfaces

# Temperature variation is due 
to powder decomposition, 
coupling between source and 
heater.

Powder Sublimation & Vapor Deposition

Leakage due
to pressure 
difference 

Gas diffusion through
porous media

Reaction
zone

Conduction/
Reaction heat

Powder

Crucible

Seed Crystal

Radiative
heat transfer

Permeability/
porosity variation

Ts,side

Ts,top

Tseed

Deposition
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Powder Sublimation and Porosity Evolution 
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Increase AlN Powder Sublimation  

4018

3010

Total AlN sublimation increase 
in presence of a central 

hole (%)

Hole size
(mm)

# Better understanding of powder porosity and geometry 
and their impacts on crystal growth rate.

# Optimization of growth conditions by adding holes in 
the powder. 

# Studying the effect of sizes/dimensions of holes on 
sublimation rate.
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Porosity Evolution

# Initial porosity of 0.1 is used in above 
cases; powder sublimation time=10 
hours.

# AlN sublimation rate can be 
increased by creating one or several 
holes in the powder source.

# Effect of AlN particle size: powder 
sublimation time=50 hours. 

# Reaction zone size depends on 
porosity and permeability. Reaction 
zone in Fig. (a) is bigger than that in 
Fig. (b).

Without hole With a central hole
Large particle Small particle

No reaction Increased reaction
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Axi-symmetric Stress Simulation

Axial temperature gradient, 5 oC/mm; and radial temperature gradient, 3 oC/mm
[hard poly-crystal surrounding single crystal]

Scenario 3 

Axial temperature gradient, 5 oC/mm; and radial temperature gradient, 3 oC/mm
[soft poly-crystal surrounding single crystal]

Scenario 2

Axial temperature gradient, 5 oC/mm; and radial temperature gradient, 3 oC/mmScenario 1

Free

Rigid

Single 

Lid

(b)

Poly 
Rigid

Fixed

Poly 

Free

Rigid

Single AlN Crystal

Lid

(a) X

Y

Fixed

# The residual stress distribution in the as-grown AlN layers has been calculated 
with/without considering the poly-crystal effect.
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Maximum Shear Stress Distribution

Scenario 1 Scenario 2

Scenario 3
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106

107

108

M
ax

im
um

 s
he

ar
 s

tre
ss

 (N
/m

2 )

Center to pheriphery of single crystal growth interface (m)
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# Only a hard polycrystalline material affects the shear stress distribution. 
# Stress density is more than doubled on the grown interface of the single crystal 

when a hard polycrystalline material presents.   
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GaN Growth – Effect of Total Flow Rate

Inlet1Inlet3 Inlet2

Gallium

OutletOutlet

Substrate

Substrate
holder

Furnace heater

Alumina tube

Outer silica
Inner silica

Silica nozzle NH3 NH3
N2 N2

A-A

B-B

Cooling rod

BN source 
holder
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From gas inlet to substrate surface along centerline (cm)

 T along the reactor centerline
 T along the furnace heater wall

Flow direction

Nozzle outlet

Q=3.1 SLM

# Within a flow rate range of 1-10 SLM, 
the substrate temperature drops from 
1307 to 1283 K. 

# A total flow rate of 3 SLM gives the 
lowest temperature difference, or the 
best uniformity, on the substrate 
surface. 
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GaN Deposition Model

Rate expression (kmol/m2s)Three Reaction Steps

6.5!109Exp(-12390/T)[GaI]2.2R1  GaI(g)+NH3(g)& GaN(s) +HI(g)+H2(g)

0.36Exp(-14000/T)[GaI3]R4  GaI3(g)+NH3(g)& GaN(s) +3HI(g)

5.88!109Exp(-13630/T)[GaI]3R3  3GaI(g)+2NH3(g)& 2GaN(s) +GaI3(g)+3H2(g)

0.07Exp(-12390/T)[GaI]R2  GaI(g)+NH3(g)& GaN(s) +HI(g)+H2(g)

Rate expression (kmol/m2s)One Overall Reaction Step

One overall reaction step
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Three reaction steps
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Deposition Rate and Sticking Probability 

42.14%57.86%7.4010.16230

45.40%54.60%9.0310.86210

52.59%47.41%13.8912.54172

61.48%38.52%24.0115.04132

68.67%31.33%38.6117.62105

77.03%22.97%73.1021.8075

Reaction 
R3

Reaction 
R2

Reaction 
R3

Reaction 
R2

Growth rate 
contribution

GaN deposition rate 
(!m/h)V/III

ratio

# The contribution of reaction R4 to the deposition rate is 
found to be less than 0.1% for all cases.

# Sticking probabilities of GaI and GaI3 are 3 orders of 
magnitude larger than NH3.

1.771.381.13230

1.861.551.22210

2.072.081.43172

2.693.021.75132

3.124.102.07105

4.156.502.6675

GaI3(!103)NH3(!106)GaI (!103)

Sticking Probability, SiV/III
ratio
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Adsorption Energy and Super-saturation
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The averaged activation energies 
of adsorption for GaI, NH3 and 
GaI3 by calculation are 5.72!104

J/mol, 1.24!105 J/mol and 
5.28!104 J/mol, respectively.  

# The achieved super-saturation is about 5.
# The super-saturation reduces with the 

temperature slightly, which means that 
the GaN deposition is diffusion 
controlled. 
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Conclusions

# AlN powder sublimation model was built, and effect 
of holes on the powder sublimation was investigated;

# Residual stress distribution in the as-grown AlN
layers was studied;

# Temperature and its distribution on the substrate 
for GaN growth was studied; 

# Surface reactions and their rates were determined; 
# Sticking probability, species adsorption energy and 

super-saturation were calculated.
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Bulk GaN crystal growth through Ga vapor 
transport technique

Huaqiang Wu, Phani Konkapaka, Barry Butterfield
Yuri Makarov*, and Michael Spencer

Cornell University
* STR

2

An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

Outline

! GaN powder decomposition;
! The efficient Ga transport through Ga2O;
! Improved design to prevent gas phase particles 

formation;
! Growth rate versus different growth parameter;
! Surface morphology of the grown GaN layer;
! Cracks in the sapphire substrate due to thick GaN 

layer;
! XRD Characterization of GaN layer;
! Summary
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GaN powder decomposition - I

2GaN(s) = 2Ga(s) + N2(g)
Ga2O3(s)+Ga = 3GaO(g)
GaO(g) + Ga(g) = Ga2O(g)
Ga(l) = Ga(g)

2GaN(s) = 2Ga(s) + N2(g)
Ga(l) = Ga(g)

Heterogeneous 
chemistry

GaN(s) Ga2O3, Ga(l)GaN(s), Ga(l)Condensed phases

N2, Ga(g), GaO(g), Ga2O(g)N2, Ga(g)Gas species

Commercial powderLab-made powder

• Lab made GaN powder has very high purity. Oxygen concentration is less 
than 400ppm;
• The commercial GaN powder is converted from Ga2O3. The powder purity 
is less than 91% with more than 3% oxygen concentration. 
• The very low equilibrium Ga vapor pressure over liquid Ga (several Pascal 
at 1000oC) limited the total amount transferred out from the GaN powder;
• From thermo dynamical calculations, Ga2O has much higher vapor pressure 
and could serve as efficient Ga carrier. 
• Ga2O is unstable and can react with NH3 to from GaN easily; 

4
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GaN powder decomposition - II
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Lab-made GaN powder

' Based on the experimental 
results, the equivalent 
activation energy of lab-made 
GaN powder is much higher 
than the commercial GaN 
powder. This may due to the 
lower Ga2O formation and 
desorption barrier.

' The weight loss of 
commercial GaN powder 
increase with the carrier gas N2
flow rate. This provide 
additional freedom to control 
the growth. The lab-made 
powder weight loss is relative 
independent on the N2 flow 
rate.
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Ga2O transport in GaN powder decomposition

N2
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Powder
charge
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GaN powder

Distribution of Ga-containing vapor species molar fraction along the tube from the 
decomposition of lab-made GaN powder. Simulation results performed by Yuri.

Distance along the tube, mm

M
ol
ar
fra
ct
io
n

0 10 20 30 4010-8

10-7

10-6

10-5

10-4

Ga

Powder
chargeLab-made 

GaN powder

N2

GaN powder charge

1st quartz frit to hold GaN powder

2nd quartz frit to prevent GaN 
particles throughU-tube setup for GaN 

powder decomposition
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New growth cell configuration

N2
N2+NH3

Seed

GaN 
powder

Quartz U-
tube

Quartz 
frit

N2
N2+NH3

Seed

GaN 
powder

Quartz U-
tube

Quartz 
frit

Ga(g)+N2

Design used previously

The back diffusion of NH3 reacts with Ga-
containing vapor. Gas phase reactions 
induce to the particles formation. This 
cause the lower growth rate and bad 
surface morphology.

New Design

The new design simply added the inner 
quartz tube to prevent any mix of NH3
with Ga-containing vapor and avoid the 
gas phase particle formation.
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Growth results with new setup

! About 35 growth experiments 
have been performed in this 
design. Repeatable growth results 
have been achieved with high 
growth rate. 

! Growth rate varies from 200 –
(>600) um/hr has been reached.

! Typically, thicker than 150um 
layer can be obtained after half of 
hour growth. The sapphire 
substrate cracked into many 
pieces after the growth due to the 
big stress from the thick layer  
and the substrate.
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Seed T=1180oC; Powder T=1110oC;
Substrate-source distance = 5mm;
Growth time: 30minutes;
Carrier gas N2 flow rate=200sccm;
Total flow rate of ammonia tube: 
200sccm. The rest is N2.
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SEM images of surface morphology

Typical surface morphology of grown GaN layer

' Surface is relatively flat compared to previous design;
' Dominated dislocation shows circular shape;
' The diameter of the circular is about 30um. 
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SEM image of cross section

Cross section view of grown GaN layer

' Cross section SEMs indicate uniform layer on substrate;
' The layer thickness varies from 150um to more than 300um;
' Surface is not flat which might due to particles formation in the cooling 
down period .

10
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Cracking of seed substrate

Big stress cause the break of the 
sample. 120o angle crack has 
been observed.

Picture of backside of the sample

Many small cracks originate 
from the lattice mismatch and 
thermal mismatch. 

SEM image of the crack

The crack break both substrate and the 
grown GaN layer.
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XRD characterization

! XRD pattern shows the grown GaN layer is single crystal;
! FWHM of the XRD rocking curve shows 7 arcmin which is 

comparable with previous crystal quality.
! The new growth setup increase the growth rate dramatically 

without deteriorating of crystal quality. 
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Summary

! Detail experiments have been performed on GaN powder 
decomposition;

! Ga2O is discovered as the main carrier for Ga-containing vapor 
transport;

! Although lab-made GaN powder has high purity, it is not used for 
bulk crystal growth due to the low Ga transport ability and liquid Ga 
formation in the powder source;

! New setup has been implemented to prevent gas phase particles 
formation;

! About 35 experimental results from the new design showed much 
high growth rate and no powder formation originated from the gas
phase particles;

! As high as 600um/hr growth rate has been reached; growth results
are repeatable;

! Surface morphology is not good which might come from the cooling
period. At that period, the III-V ratio and temperature environment 
changed and particles formation is preferred.
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Characterization of AlN and GaN crystals
by 

Synchrotron White Beam X-ray Topography 
(SWBXT) and 

High Resolution X-ray Diffraction (HRXRD)
B. Raghothamachar, J. Bai and M. Dudley,

Dept. of Materials Science & Engineering, Stony Brook University, Stony Brook NY

R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser and Z. Sitar
Dept. of Materials Science & Engineering, North Carolina State University, Raleigh NC

B. Wang and M. Callahan
Air Force Research Laboratory, Hanscom AFB MA

P. Konkapaka, H. Wu and M. Spencer
Dept. of Electrical and Computer Engineering, Cornell University, Ithaca NY
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Ammonothermal growth of GaN (AFRL)

Defect Characterization of HVPE GaN seeds 
prior to ammonothermal growth

! HVPE GaN substrates (from MIT Lincoln Lab 
(Rich Molnar)) to be used as seeds. 

! Defects in seed are usually replicated in the 
overgrown crystal. Mapping the defect distribution 
in seeds prior to growth facilitates separation of 
defects generated during growth from those 
propagating from the seed in the grown crystal. 

! X-ray topographs:
" Uniform distribution of high density of dislocations 

(> 106/cm2). Typically, no individual dislocations are 
resolved. 

" Considerably distorted w.r.t original sample shapes 
indicating significant lattice plane bending due to 
residual strains.

! HRXRD measurements:
" Considerable broadening of rocking curves due to 

due to a combination of tilt and lattice plane bending 
is observed. 

" Multiple peaks indicate presence of several 
subgrains. 

" Triple axis C-2D widths vary from 20-40” indicating 
good quality GaN with low impurities (perfect 
crystal rocking curve is 10”).

Summary of results from HVPE GaN seeds

381036349162116a

1810072714232113G

2014212913872046G
2014772515362046H
1810702911212060a
2314132616402060b
2014472917872060c
2018232717982060d
1819412516922060e

251256388142116b

271609337802116F
3516263510972116E

251404316902109I
221511304972109H

2010683110602045b
3412823210562045a

TCRC 
(sec)

DCRC 
(sec)

TCRC 
(sec)

DCRC 
(sec)

N (detached) faceGa (growth) faceSample
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Ammonothermal growth of GaN (AFRL)

( Comparison of optical pictures and corresponding transmission x-ray topographs (g = 11-20) 
reveals elongation or contraction of topographs depending on direction of bending.

( Inclusion-like contrast observed on x-ray topographs is actually from hexagonal pits on the Ga
growth surface (see: T. Paskova, E. M. Goldys, R. Yakimova, E. B. Svedberg, A. Henry and B. 
Monemar, JCG, 208 (2000), pp.18-26).

( Double axis rocking curves recorded from the Ga and N faces exhibit different FWHM widths due 
to bending in opposite directions.

( Reciprocal space maps recorded from the N face exhibit somewhat lower triple axis C-2D widths 
than those from Ga face. 

2060b

2045b

( Typical features of HVPE GaN seeds
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GaN grown from the vapor phase (Cornell)

( Sublimation growth using Ga2O3 powders
! Sublimation growth from GaN powders is hindered by formation of liquid Ga in 

the source, leading to rapidly decreasing growth rates. Further, it is surmised that 
GaN growth actually occurs by Ga transport in the form of Ga2O (oxygen present 
in the source powder). 

! Therefore, a new experimental setup to conduct growth using a mixture of Ga2O3
and graphite (carbon) powders as the source was designed. At the growth 
temperature, Ga2O3 reacts with carbon to produce Ga2O which reacts with the 
ammonia gas to produce GaN.

! Typical growth conditions:
" Seed temperature – 1100-1200ºC; Source temperature - 1050-1130ºC
" Pressure - 600 torr; Carrier gas: Nitrogen (450 sccm); 
" Central tube: 10sccm ammonia + 90sccm nitrogen
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GaN grown from the vapor phase (Cornell)

#350 #351 #352

( Reciprocal space maps of layers from 
previous growth runs reveal tilt and lattice 
parameter difference between sublimation 
and epi- grown layers.
( During current runs, the epi and 
sublimation grown GaN layers are aligned 
with each other with no tilt or lattice 
parameter differences (except #351 which 
shows tilt).
( As indicated by the triple axis C-2D
widths, the samples vary in quality but 
generally are similar or slightly better than 
previous samples.

40”

#169

40363169

602825352

35368351

481053350

TCRC
(arcsec)

DCRC
(arcsec)

Sample #

Previous growth runs – best sample

48” 35”
60”
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Sublimation growth of AlN (NCSU)
( Z-061 boule: AlN boule grown by sublimation in RF reactor

Growth direction
#1#2#3#4

25” 22” 21” 20”

Optical photographs

Transmission x-ray topographs

(0002) Reciprocal space maps

( Self-seeding method. 
( Color of wafers darkens as we 

move away from seed suggesting 
gradually increasing impurity 
incorporation. 

( X-ray topographs also show 
several small grains in addition to 
the central large grain of nearly 
(0002) orientation.

( From wafer #4 to #1, 
inhomogeous strains and defect 
densities gradually increase. 

( Quality of seed used is good and 
growth conditions are optimized 
for single crystal growth. 
Therefore, it is likely that impurity 
incorporation lead to deterioration 
of quality.
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Sublimation growth of AlN (NCSU)

Dislocation and stress distribution in AlN crystals
! In both samples, the bottom edges are characterized by inhomogeneous strains and deformation-induced dislocations are 
observed. This edge was presumably in contact with crucible during growth. Deformation-induced dislocations are also 
observed just below the apex at the top. These could have nucleated under thermal stresses. 
! Higher dislocation densities are observed in case of the etched sample.
! Pendellösung fringes near the edges indicate dynamical diffraction conditions and attest to high crystalline quality.
! C-2D triple axis widths of about 13-14” is comparable to perfect crystal width of about 11” for current HRXRD setup.

Transmission topographs (g = 11-20)
As-grown Etched

13” 14”
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Sublimation growth of AlN (NCSU)
Polishing of AlN crystals
! Optical pictures: P02 contains a 

demarcation while P03 and P04 have some 
small crystals embedded in them from 
which cracks are nucleated probably during 
polishing. 

! Reflection x-ray topographs: Recorded in 
grazing incidence geometry (penetration 
depth of 10 microns). Sample bulk is nearly 
defect-free and features revealed are 
scratches leftover from the polishing 
process, cracks and embedded inclusions 
(also AlN as revealed by EDAX).

! Mildly blurred images suggests some 
residual strain from the polishing process. 

! Reciprocal space maps: C-2D triple axis 
widths are about 12” which is comparable to 
11” for perfect crystal. Some amount of 
diffuse scattering at the tails are from 
polishing strains.

P02

P03

P04

12”

11.5”

12.5”
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Sublimation growth of AlN (NCSU)
X-ray reflectivity (Grazing incidence X-ray 

scattering) 
! At small incident angles below some critical angle Dc, X-rays are totally 

reflected from solid surface since refractive index for X-rays is less than 
1. Above this angle, X-ray beam penetrates the surface successively 
deeper as the angle is increased and variations in electron density through 
the sample give rise to distribution of scattered intensity as the incident 
angle is varied. 

! For a non-absorbing, perfectly smooth surface, reflected intensity 
abruptly falls and is proportional to (2D)-4 for angles well beyond Dc. 
From rough surfaces, this decline is more rapid. 

! Grazing incidence X-ray scattering techniques can be applied to samples 
with no long-range crystalline order as well as to perfect crystals. 

! Thickness of layers upto 1 micron can be determined as well as RMS 
roughness of surface and interfaces using diffuse scatter. 

! For collecting diffuse scatter –
" Transverse diffuse scatter (fixed detector angle)
" Longitudinal diffuse scatter (off-specular scan)
" Detector-only diffuse scatter (fixed sample angle)

! Requirements: Reasonably flat sample over footprint of 
beam (else signal will be low) (line focus source preferred).

! High intensity beam and wide range detector

! For AlN:
" Presence of cracks and embedded inclusions E surface not flat
" Small sample size E lower reflected intensity
" Insufficient intensity for proper diffuse scatter measurements 
E Optimization of recording conditions is required. 

Specular reflectivity scan for AlN
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AlN films grown on sapphire substrates
! Stress evolution during AlN vapor growth 

" #1: Grown at low temperature with a final thickness of 0.6 !m.
" #2: Grown at high temperature with a final thickness of 1.8!m. 

! Three factors contribute to the  state of stress:
" Lattice mismatch:   Residual elastic stress     > = (Nsubstrate×dsubstrate – Nfilm×dfilm)/Nfilm×dfilm
Nsubstrate and Nfilm are measured from HRTEM images
" Coalescence of initial islands:     > = "max/L      "max= [2L(21sv – 1 gb)(1 – ")/E]
Parameters are measured from AFM images recorded right before the island coalescence
" Thermal expansion during cooling: > = (#film – #substrate) "T
The in-plane stress can be calculated with ! = E > (1 – ")

#1 #2

Film #1, under tensile 
stress – tensile crack 
(mud crack) indicated 
by arrow; 

Film #2, under 
compressive stress –
compressive crack 
(delamination crack)

(MRS Symp. Proc., 
892, FF26-01.1,(2006).
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Reorientation of a screw type TD (J. Bai et al APL, 88,051903,2006)

AlN films grown on sapphire substrates

Bending of threading dislocations 
driven by growth mode 
modification
( The V/III ratio was changed to 
~11500 and the TMA and NH3
flow rates were changed to ~9.6 
and ~111500 #mol/min, 
respectively at the sub-interface.
( Large kinks or dipole half loops 
formed at the sub-interface.
( Threading dislocation density 
dropped by a factor of three at the 
sub-interface.
( The dislocations which 
experience bending are 
predominantly of pure screw or 
mostly screw character.

12
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Double-axis rocking curves of on-axis sample  
(#1) and vicinal sample (#2) - quite different!

Triple-axis rocking curves (d-spacing scans)

GaN films grown on on-axis and vicinal SiC substrates with AlN buffer

( Sample #1: on-axis (miscut < 0.1°)
( Sample #2: offcut by 3.5°

! FWHM of #2 is only half of that in #1: Vicinal GaN 
has much higher crystalline quality.

! Strain relaxation (lower figure):
" Vicinal sample #2: GaN fully relaxed with a uniform 

lattice constant. Slight compression in AlN
" On-axis sample #1: GaN with compressive strains 

and graded lattice constants. The compressive strain 
of AlN is three times that of #2.

! Advantage of VSE: Higher crystalline quality, 
facilitating rapid and smooth strain relaxation at the 
interface (X. Huang at al PRL, 95, 086101-1 (2005); 
APL, 86, 211916, (2005)). 
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GPMD-driven Strain Relaxation Mechanisms in the vicinal system

( GPMD: Geometrical partial misfit dislocation
GPMDs accommodate the lattice mismatch and stacking 
sequence mismatch simultaneously! More energetically 
favorable. 

( Practical importance: Offcut angle determines step density, 
the latter determines GPMD density. So by optimizing the 
offcut angle one can let the GPMDs alone fully relax 
mismatch without the formation of other defects. 

( Theoretical optimal offcut angles:
" AlN/6H-SiC:  2.8° (#a/a = 1%)
" GaN/6H-SiC: 9.7° (#a/a = 3.5%)

(a) Formation of GPMDs at 2H/6H interface 
steps. (b) Gradual transition of the stacking 
sequence of a 60° GPMD connecting the A and 
C stacking layers on a B layer. Dashed circles 
represent the original stacking positions 
without deformation. (c) “Symbol change”
above a GPMD with no vertical boundary.

High resolution TEM  
and reconstructed 
FFT images of the 
AlN/6H-SiC interface
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Overview of Results
! Ammonothermal grown GaN single crystals: 

" A series of HVPE GaN substrates to be used as seeds for ammonothermal growth have been systematically 
studied to map their defect distributions in order to facilitate separation of defects due to growth from defects due 
to propagation from seed.

! GaN layers grown from the vapor phase:
" Several samples grown using the new experimental setup with Ga2O3 source have been characterized.
" Growth optimization has eliminated the tilt and lattice parameter differences between sublimation and epi layers.

! AlN boule grown from seed in RF reactor:
" Gradual increase in defect densities and inhomogeneous strains during growth suggest an increasing impurity 

incorporation.
! Polishing of AlN crystals

" A combination of SWBXT, HRXRD, AFM and x-ray reflectivity has been used to analyze the polished surface of 
AlN crystals. Surfaces are characterized by some scratches and mild residual strains. 

! AlN films grown on sapphire substrates
" Bending of screw dislocations driven by growth mode modification leads to mutual annihilation and reduction in 

threading dislocation density.
! GaN films grown on on-axis and vicinal SiC substrates with AlN buffer

" GPMDs accommodate the lattice mismatch and stacking sequence mismatch simultaneously. By optimizing the 
offcut angle, GPMDs alone fully relax mismatch without the formation of other defects. Optimal offcut angles 
have been theoretically determined for AlN and GaN on 6H-SiC.
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Work plan for next 6 months
Ammonothermal grown GaN single crystals (Hanscom): 

( Structural defect characterization of ammonothermal layers grown on HVPE GaN crystals (already 
characterized by SWBXT and HRXRD). 
( SEM and TEM studies of cross-sectional samples to investigate the nature of the interface (impurities, 
voids, presence of oxide layer, etc.) and defect generation and propagation.

GaN layers grown from the vapor phase (Cornell):
( Continued structural characterization of GaN layers grown from Ga2O3 source under different growth 
conditions to further optimize conditions for growing high quality layers.

AlN grown from the vapor phase (NCSU): 
( Detailed characterization of wafers sliced from AlN boules and correlation with growth conditions as 
well as modeling predictions.
( Evaluation of polished AlN samples using a combination of SWBXT, AFM and grazing incidence x-ray 
scattering.

( Systematic study of the relationship between the quality of GaN epifilms and the off-cut conditions 
of the substrate (both SiC and sapphire) using HRTEM, HRXRD and strain modeling. 
( For GaN samples: Correlation of X-ray and TEM observations with PL measurements (from Prof. 
Skromme).
( For AlN samples: Correlation of HRXRD results with reflectance measurements (from Prof. 
Skromme).
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Identification of Inversion Domain Boundaries in 
AIN Layers and their 

Influence on Optical Properties

S. Lee and S. Mahajan
Department of Chemical and Materials Engineering

Arizona State University
Tempe, AZ 85287-6006
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Outline

! Introduction
! Properties and microstructures of AIN layers
! Identification inversion domain boundaries (IDBs)
! Optical properties
! Summary
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Introduction

! Structure of an IDB

Al N

Al-Polar N-PolarIDB

[1210]

[0
00

1]

!Schottky barrier height on group III-polar surface is higher and leakage  current          
is lower
!Photoluminescence properties of group V-polar films grown by MOCVD are 
better than group III-polar films

Atomic Structure of an inversion domain boundary
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Properties and Microstructures

Growth Protocol

10min 20min 120min

1190 !

510 !

Surface
Cleaning

AlN Epi -growth

H2
H2+NH3 H2+NH3+TMAl

3min

AnnealingNucleation
Nitridation

750 !

3min

H2+NH3

H2+NH3+TMAl

Summary of the growth process used for AIN deposition
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Properties and Microstructures (Cont’d)

! Growth Conditions

510!C 120sec031214B890!C 7min031029A

510!C 90sec040113A670!C 3min031022B

510!C 60sec031108B560!C 1min031105A

510!C 30sec040127A510!C 1min031108B

510!C 15sec040123A460!C 1min031114B

ConditionSample IDConditionSample ID

Set "Set #
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Properties and Microstructures (Cont’d)

! XRD FWHM

XRD FWHM of AIN films as a function of NL growth temperature and time
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Properties and Microstructures (Cont’d)

! Surface Morphology of Nuclealzon Layers

AFM images(1x1!) of as-deposited NLs as a function of nucleation
temperatures (a) 460"C (b) 510"C (c) 560"C  (d) 670"C

8
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Properties and Microstructures (Cont’d)

! Surface Morphologies of Overlays

AFM images(1x1!) of AlN overlayer as a function of nucleation
temperatures (a) 460"C (b) 510"C (c) 560"C  (d) 670"C
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Properties and Microstructures (cont’d)

! Surface Roughness of Overlayers
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Properties and Microstructures (Cont’d)

! IDBs in Nucleation Layers

Cross-sectional HREM images HT AlN growth for 5min on
annealed (a) 670"C 3min NL, (b) 510"C 30sec NL
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Properties and Microstructures (Cont’d)

! IDBs in Overlayers
WBDF 1210

1210WBDF

interface

interface

(a)

(b)

ID ID

200nm

200nm
WBDF images HT AlN growth for 2hours on annealed

(a) 670"C 3min NL, (b) 510"C 30sec NL
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Properties and Microstructures (Cont’d_

! KOH Etching Response of Overlayers

b)a)

c) d)
AFM images (a) as grown and (b) etched AlN on 510"C 30sec NL

(c) as grown and (d) etched AlN on 670"C 3min NL
•RMS roughness changes from 1.69 in (a) to 0.98 nm in (b)

•RMS roughness changes from 11 nm in (c) to 5 nm in (d)
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Properties and Microstructures (Cont’d)

! Photoluminescence Characteristics at 300K
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Photoluminescence spectra (at 300K) from the AIN layer of various conditions.
(a) set I    (b) set II
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Properties and Microstructures (Cont’d)

! Photoluminescence Characteristics at 10K
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Photoluminescence spectra (at 10K) from the AlN layer on (a) 510"C 30sec NL
(b) 670"C 3min NL

(a)

(b)
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Summary

! Nucleation layer growth conditions influence the 
formation of IDBs in AIN

! IDBs can be identified by chemical etching
! Presence of IDBs enhances band-edge emission in AIN 

layers.
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